Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

5,6-Dihydro-1,10-phenanthroline-1,10diium μ-oxido-bis[pentafluoridotantalate(V)]

Zhao-Hui Meng,* Yu-Quan Feng and Xin-Feng Chen
College of Chemistry and Pharmacy Engineering, Nanyang Normal University, Nanyang 473061, People's Republic of China
Correspondence e-mail: nysymzh@126.com

Received 8 March 2012; accepted 4 April 2012
Key indicators: single-crystal X-ray study; $T=296 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.010 \AA$; R factor $=0.028 ; w R$ factor $=0.072$; data-to-parameter ratio $=13.9$.

In the title compound, $\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Ta}_{2} \mathrm{~F}_{10} \mathrm{O}\right]$, the doubly protonated 5,6 -dihydro-1,10-phenantroline-1,10-diium cation is located on a twofold rotation axis, whereas the isolated $\left[\mathrm{Ta}_{2} \mathrm{OF}_{10}\right]^{2-}$ dianion has $\overline{1}$ symmetry. In the so far unknown dianion, the symmetry-related Ta^{V} atoms are octahedrally coordinated by five F atoms and a bridging O atom, the latter being located on an inversion centre. The two pyridine rings in the cation make a dihedral angle of $22.8(4)^{\circ}$. The cations and dianions are arranged in layers parallel to (100) and are connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogenbonding interactions into a three-dimensional structure.

Related literature

For structure-property relations of metal oxyfluorides, see: Hagerman \& Poeppelmeier (1995); Halasyamani \& Poeppelmeier (1998); Welk et al. (2002).

Experimental

Crystal data
$\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Ta}_{2} \mathrm{~F}_{10} \mathrm{O}\right]$
$M_{r}=752.14$
Monoclinic, $C 2 / c$

$$
\begin{aligned}
& a=13.536(2) \AA \\
& b=11.3031(17) \AA \\
& c=11.5316(17) \AA
\end{aligned}
$$

$\beta=90.093$ (2) ${ }^{\circ}$
$\mu=12.50 \mathrm{~mm}^{-1}$
$V=1764.4$ (5) \AA^{3}
$T=296 \mathrm{~K}$
$Z=4$
Mo $K \alpha$ radiation

Data collection
Bruker APEXII CCD diffractometer
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.179, T_{\text {max }}=0.225$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.072$
$S=1.05$
1725 reflections
$0.21 \times 0.20 \times 0.17 \mathrm{~mm}$

4738 measured reflections
1725 independent reflections
1573 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.029$

124 parameters
H -atom parameters constrained
$\Delta \rho_{\text {max }}=1.96 \mathrm{e}^{-3}$
$\Delta \rho_{\min }=-1.14 \mathrm{e}^{\AA^{-3}}$

Table 1
Selected bond lengths (\AA).

Ta1-F4	$1.877(5)$	Ta1-O1	$1.8924(3)$
Ta1-F5	$1.886(5)$	Ta1-F3	$1.895(4)$
Ta1-F1	$1.886(5)$	Ta1-F2	$1.905(4)$

Table 2
Hydrogen-bond geometry ($\AA{ }^{\circ}{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 A \cdots \mathrm{~F}^{\mathrm{i}}$	0.86	2.45	$3.114(10)$	135
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{Fl}^{\text {ii }}$	0.93	2.26	$3.066(9)$	145
$\mathrm{C} 6-\mathrm{H} 6 A \cdots \mathrm{FB}^{\text {iii }}$	0.97	2.28	$3.219(8)$	163
$\mathrm{C} 6-\mathrm{H} 6 B \cdots \mathrm{~F}^{\text {iv }}$	0.97	2.45	$3.268(9)$	142
Symmetry codes:	(i) $-x+1,-y+1,-z+1 ;$	(ii) $x+\frac{1}{2}, y+\frac{1}{2}, z+1 ;$	(iii)	
$-x+1,-y,-z+1 ;$ (iv) $-x+\frac{3}{2},-y+\frac{1}{2},-z+1$.				

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: WM2602).

References

Bruker (2008). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
Hagerman, M. E. \& Poeppelmeier, K. R. (1995). Chem. Mater. 7, 602-621.
Halasyamani, P. S. \& Poeppelmeier, K. R. (1998). Chem. Mater. 10, 2753-2769.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
Welk, M. E., Norquist, A. J., Arnold, F. P., Stern, C. L. \& Poeppelmeier, K. R. (2002). Inorg. Chem. 41, 5119-5125.

supplementary materials

Acta Cryst. (2012). E68, m561 [doi:10.1107/S1600536812014742]

5,6-Dihydro-1,10-phenanthroline-1,10-diium μ-oxido-bis[pentafluoridotantalate(V)]

Zhao-Hui Meng, Yu-Quan Feng and Xin-Feng Chen

Comment

Metal oxyfluorides have received considerable attention in recent years due to their structure-related properties such as ferroelectricity, piezoelectricity and second-order nonlinear optical activity (Hagerman \& Poeppelmeier, 1995; Halasyamani \& Poeppelmeier, 1998; Welk et al., 2002). In this article, we report on a new oxidofluoridotantalate with composition $\left[\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right]\left[\mathrm{Ta}_{2} \mathrm{OF}_{10}\right]$ that was obtained by means of a two-step hydrothermal method.
The title compound (Fig. 1) contains one diprotonated 5,6-dihydro-1,10-phenantroline-1,10-diium cation (symmetry 2) and one $\left[\mathrm{Ta}_{2} \mathrm{OF}_{10}\right]^{2-}$ dianion (symmetry $\overline{1}$). In the latter, the Ta^{v} ion is coordinated by five fluorine atoms and one oxygen atom, forming an octahedral coordination geometry. It is noteworthy that the title compound features the first oxidofluoridotantalate with composition $\left[\mathrm{Ta}_{2} \mathrm{OF}_{10}\right]^{2-}$. The cation is not flat, as can be expected from the 5,6 -dihydro bridging $s p^{3}$ carbon atoms, with a dihedral angle of of 22.8 (4) ${ }^{\circ}$ between the two pyridine rings. The cations and dianions are arranged in layers parallel to (100) and are connected through $\mathrm{N}-\mathrm{H} \cdots \mathrm{F}$ and $\mathrm{C}-\mathrm{H} \cdots \mathrm{F}$ hydrogen bonding interactions into a three-dimensional structure (Fig. 2).

It should be noted that the hydrothermal conditions make it possible that parts of the fluorine atoms are replaced by OH^{-} ions. To exclude the presence of the latter, additional characterisation methods were employed (see details in the experimental part). Moreover, IR spectroscopy revealed no inclusion of OH^{-}in the compound (Fig. 3).

Experimental

All chemicals were of reagent grade quality obtained from commercial sources and were used without further purification. The title compound was obtained by using a two-step hydrothermal method in a 50 mL Teflon-lined autoclave. Firstly, $0.66 \mathrm{~g} \mathrm{Ta}_{2} \mathrm{O}_{5}(1.5 \mathrm{mmol})$ was dissolved in $1.11 \mathrm{~g} \mathrm{HF}\left(40_{w 1} \%\right)(7.4 \mathrm{mmol})$ and heated to 453 K for 4 hours. After it was cooled, the solution was added into $0.90 \mathrm{~mL} \mathrm{H}_{3} \mathrm{PO}_{4}\left(85_{w} \%\right), 0.24 \mathrm{~g} \mathrm{2,2}$-bipyridine (1.5 mmol), 2.0 mL ethylene glycol and $1.0 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}$. Then the mixture was stirred for half an hour, and transferred into a Teflon-lined stainless steel autoclave (50 mL) and treated at 453 K for 7 days. After the mixture was slowly cooled to room temperature, yellow block-like crystals suitable for X-ray structure determination were obtained. It worth noting that the reaction of $2,2^{\prime}$-bipyridine and ethylene glycol produced the 5,6 -dihydro- 1,10 -phenantroline ligand. The chemical composition of the title compound was confirmed by EDS and elemental analysis. The results of EDS indicate the presence of the elements Ta, F, O, C and N. The Ta composition was quantified by ICP-OES: Anal./Calcd (\%): Ta: 48.59/48.12. C, H, and N analysis was performed on a PerkinElmer 2400II elemental analyzer. Anal./Calcd (\%): C, 19.16; H, 1.61; N,3.72 \%. Found: C, 19.63; H, 1.94; N, 3.17 \%. IR (KBr, cm ${ }^{-1}$) (Fig. 3): 3110, 3057, 2920, 2861, $1621,1584,1494,1457,1431,1367,1330,1282,1234,1181,1149,1033,869,784,715,593$ and 535.

Refinement

The H atoms bonded to C and N were positioned geometrically and refined using a riding model, with $\mathrm{C}-\mathrm{H}=0.93 \AA$ for H atoms bound to $s p^{2} \mathrm{C}$ atoms, and $0.97 \AA$ for H atoms bound to $s p^{3} \mathrm{C}$ atoms, and with $\mathrm{N}-\mathrm{H}=0.86 \AA$, and with $U_{\text {iso }}(\mathrm{H})$ $=1.2(1.5)$ times $U_{\mathrm{eq}}(\mathrm{C})$, and $U_{\mathrm{iso}}(\mathrm{H})=1.2$ times $U_{\mathrm{eq}}(\mathrm{N})$, respectively. The highest and lowest remaining electron density was located $0.84 \AA$ and $0.72 \AA$ from atom Ta1.

Computing details

Data collection: APEX2 (Bruker, 2008); cell refinement: SAINT (Bruker, 2008); data reduction: SAINT (Bruker, 2008); program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97
(Sheldrick, 2008); molecular graphics: SHELXTL (Sheldrick, 2008); software used to prepare material for publication: SHELXTL (Sheldrick, 2008).

Figure 1
View of the title molecule with displacement ellipsoids drawn at the 30% probability level [symmetry code A: $-\mathrm{x}+2, \mathrm{y}$, $\mathrm{z}+3 / 2]$.

Figure 2
Crystal packing viewed along the c axis. Hydrogen bonding interactions are shown as dashed lines.

Figure 3

IR spectrum of the title compound.

5,6-Dihydro-1,10-phenanthroline-1,10-diium $\boldsymbol{\mu}$-oxido-bis[pentafluoridotantalate(V)]

Crystal data

$\left(\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{~N}_{2}\right)\left[\mathrm{Ta}_{2} \mathrm{~F}_{10} \mathrm{O}\right]$
$M_{r}=752.14$
Monoclinic, C2/c
Hall symbol: - C 2yc
$a=13.536$ (2) \AA
$b=11.3031$ (17) \AA
$c=11.5316$ (17) \AA
$\beta=90.093$ (2) ${ }^{\circ}$
$V=1764.4(5) \AA^{3}$
$Z=4$

Data collection

Bruker APEXII CCD
diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: multi-scan
(SADABS; Bruker, 2008)
$T_{\text {min }}=0.179, T_{\text {max }}=0.225$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.072$
$S=1.05$
1725 reflections
124 parameters
0 restraints
Primary atom site location: structure-invariant direct methods
$F(000)=1368$
$D_{\mathrm{x}}=2.831 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation, $\lambda=0.71073 \AA$
Cell parameters from 3156 reflections
$\theta=2.4-28.3^{\circ}$
$\mu=12.50 \mathrm{~mm}^{-1}$
$T=296 \mathrm{~K}$
Block, yellow
$0.21 \times 0.20 \times 0.17 \mathrm{~mm}$

4738 measured reflections
1725 independent reflections
1573 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.029$
$\theta_{\text {max }}=26.0^{\circ}, \theta_{\text {min }}=2.9^{\circ}$
$h=-13 \rightarrow 16$
$k=-13 \rightarrow 13$
$l=-14 \rightarrow 12$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0278 P)^{2}+20.5568 P\right]$
where $P=\left(F_{o}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}<0.001$
$\Delta \rho_{\text {max }}=1.96 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.14 \mathrm{e}^{-3}$

Special details

Geometry. All esds (except the esd in the dihedral angle between two 1.s. planes) are estimated using the full covariance matrix. The cell esds are taken into account individually in the estimation of esds in distances, angles and torsion angles; correlations between esds in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell esds is used for estimating esds involving 1.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
Ta1	$0.193168(19)$	$0.18732(2)$	$0.13666(2)$	$0.03630(12)$
C2	$0.9169(6)$	$0.2166(8)$	$0.9660(7)$	$0.0499(19)$
H2A	0.9123	0.1448	1.0050	0.060^{*}
C1	$0.9649(4)$	$0.2220(5)$	$0.8646(5)$	$0.0210(10)$
C5	$0.9738(5)$	$0.3254(5)$	$0.8051(5)$	$0.0332(13)$

supplementary materials

N1	$0.9318(6)$	$0.4270(7)$	$0.8502(7)$	$0.069(2)$
H1A	0.9361	0.4931	0.8136	0.083^{*}
C4	$0.8832(7)$	$0.4207(9)$	$0.9546(7)$	$0.062(2)$
H4A	0.8558	0.4890	0.9858	0.075^{*}
C3	$0.8742(7)$	$0.3164(9)$	$1.0135(7)$	$0.060(2)$
H3A	0.8403	0.3127	1.0834	0.072^{*}
F1	$0.2944(5)$	$0.0732(6)$	$0.1479(5)$	$0.093(2)$
F2	$0.1355(4)$	$0.1192(5)$	$0.2716(4)$	$0.0684(14)$
F3	$0.1159(4)$	$0.0811(4)$	$0.0475(4)$	$0.0692(15)$
F4	$0.0908(5)$	$0.2992(5)$	$0.1343(7)$	$0.0867(19)$
F5	$0.2665(4)$	$0.2877(5)$	$0.2351(5)$	$0.0720(15)$
O1	0.2500	0.2500	0.0000	$0.082(3)$
C6	$1.0104(5)$	$0.1139(6)$	$0.8134(6)$	$0.0408(15)$
H6A	0.9827	0.0436	0.8490	0.049^{*}
H6B	1.0811	0.1141	0.8270	0.049^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Ta1	$0.03744(18)$	$0.03940(18)$	$0.03206(18)$	$-0.00695(11)$	$0.00427(11)$	$-0.00056(11)$
C2	$0.047(4)$	$0.069(5)$	$0.033(4)$	$-0.008(4)$	$0.001(3)$	$0.012(4)$
C1	$0.023(3)$	$0.023(2)$	$0.016(2)$	$-0.001(2)$	$0.004(2)$	$0.002(2)$
C5	$0.039(3)$	$0.032(3)$	$0.028(3)$	$0.000(3)$	$0.001(3)$	$-0.004(2)$
N1	$0.087(5)$	$0.062(5)$	$0.059(4)$	$0.015(4)$	$0.000(4)$	$-0.007(4)$
C4	$0.069(6)$	$0.076(6)$	$0.042(4)$	$0.016(5)$	$0.015(4)$	$-0.022(4)$
C3	$0.056(5)$	$0.099(7)$	$0.025(4)$	$0.003(4)$	$0.013(3)$	$-0.012(4)$
F1	$0.094(4)$	$0.117(5)$	$0.066(3)$	$0.058(4)$	$-0.006(3)$	$-0.024(3)$
F2	$0.097(4)$	$0.066(3)$	$0.042(3)$	$-0.019(3)$	$0.024(3)$	$0.005(2)$
F3	$0.095(4)$	$0.065(3)$	$0.048(3)$	$-0.038(3)$	$-0.010(3)$	$0.002(2)$
F4	$0.070(4)$	$0.061(3)$	$0.128(6)$	$0.017(3)$	$-0.009(4)$	$0.007(3)$
F5	$0.071(3)$	$0.082(4)$	$0.063(3)$	$-0.031(3)$	$0.001(3)$	$-0.023(3)$
O1	$0.106(8)$	$0.095(7)$	$0.045(5)$	$-0.054(6)$	$0.018(5)$	$0.008(5)$
C6	$0.043(4)$	$0.031(3)$	$0.048(4)$	$0.002(3)$	$0.005(3)$	$0.004(3)$

Geometric parameters ($A,{ }^{\circ}$)

Ta1-F4	1.877 (5)	C5-N1	1.384 (9)
Ta1-F5	1.886 (5)	C5-C5 ${ }^{\text {i }}$	1.455 (13)
Ta1-F1	1.886 (5)	N1-C4	1.374 (11)
Ta1-O1	1.8924 (3)	N1-H1A	0.8600
Ta1-F3	1.895 (4)	C4-C3	1.366 (13)
Ta1-F2	1.905 (4)	C4-H4A	0.9300
C2-C1	1.340 (9)	C3-H3A	0.9300
$\mathrm{C} 2-\mathrm{C} 3$	1.381 (12)	$\mathrm{O} 1-\mathrm{Ta} 1^{\text {ii }}$	1.8924 (3)
$\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	0.9300	C6- $\mathrm{C}^{\text {i }}$	1.488 (14)
C1-C5	1.361 (8)	C6-H6A	0.9700
C1-C6	1.490 (8)	C6-H6B	0.9700
F4-Ta1-F5	89.5 (3)	C5- $\mathrm{C} 1-\mathrm{C} 6$	117.8 (5)
F4-Ta1-F1	176.8 (3)	C1-C5-N1	119.1 (6)

F5-Ta1-F1	89.3 (3)
F4-Ta1-O1	92.1 (2)
F5-Ta1-O1	93.55 (17)
F1-Ta1-O1	91.0 (2)
F4-Ta1-F3	90.7 (3)
F5-Ta1-F3	175.8 (2)
F1-Ta1-F3	90.2 (3)
$\mathrm{O} 1-\mathrm{Ta} 1-\mathrm{F} 3$	90.60 (15)
F4-Ta1-F2	88.9 (3)
F5-Ta1-F2	88.1 (2)
F1-Ta1-F2	88.1 (3)
$\mathrm{O} 1-\mathrm{Ta} 1-\mathrm{F} 2$	178.07 (15)
F3-Ta1-F2	87.7 (2)
C1-C2-C3	120.8 (7)
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{C} 3-\mathrm{C} 2-\mathrm{H} 2 \mathrm{~A}$	119.6
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 5$	121.5 (6)
C2-C1-C6	120.7 (6)
C3-C2-C1-C5	0.4 (11)
C3-C2-C1-C6	-179.6 (7)
C2-C1-C5-N1	-0.4 (10)
C6- $\mathrm{C} 1-\mathrm{C} 5-\mathrm{N} 1$	179.6 (6)
C2-C1-C5-C5 ${ }^{\text {i }}$	-179.6 (8)
C6-C1-C5-C5 ${ }^{\text {i }}$	0.4 (10)
C1-C5-N1-C4	0.7 (11)

$\mathrm{C} 1-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$119.0(4)$
$\mathrm{N} 1-\mathrm{C} 5-\mathrm{C} 5^{\mathrm{i}}$	$122.0(5)$

$\mathrm{C} 5-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4$	$179.8(8)$
$\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3$	$-1.0(13)$
$\mathrm{N} 1-\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$1.0(14)$
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	$-0.7(13)$
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$138.0(7)$
$\mathrm{C} 5-\mathrm{C} 1-\mathrm{C} 6-\mathrm{C}^{\mathrm{i}}$	$-42.0(9)$

Symmetry codes: (i) $-x+2, y,-z+3 / 2$; (ii) $-x+1 / 2,-y+1 / 2,-z$.

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	D-H	$\mathrm{H} \cdots \mathrm{A}$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{N} 1-\mathrm{H} 1 A \cdots \mathrm{~F} 4^{\text {iii }}$	0.86	2.45	3.114 (10)	135
$\mathrm{C} 4-\mathrm{H} 4 A \cdots \mathrm{~F} 1^{\text {iv }}$	0.93	2.26	3.066 (9)	145
C6-H6 ${ }^{\cdots}{ }^{\text {F }} 3^{v}$	0.97	2.28	3.219 (8)	163
C6-H6B \cdots F5 ${ }^{\text {vi }}$	0.97	2.45	3.268 (9)	142

Symmetry codes: (iii) $-x+1,-y+1,-z+1$; (iv) $x+1 / 2, y+1 / 2, z+1$; (v) $-x+1,-y,-z+1$; (vi) $-x+3 / 2,-y+1 / 2,-z+1$.

